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ABSTRACT

Observations of OH are a useful proxy of the water production rate ðQH2OÞ and outflow velocity ðVH2OÞ in
comets. From wide-field images taken on 1997 March 28 and April 8 that capture the entire scale length of
the OH coma of comet C/1995 O1 (Hale-Bopp), we obtain QOH from the model-independent method of
aperture summation and QH2O from the OH photochemical branching ratio, BROH. Using an adaptive ring
summation algorithm, we extract the radial brightness distribution of OH 0–0 band emission out to cometo-
centric distances of up to 106 km, both as azimuthal averages and in quadrants covering different position
angles relative to the comet–Sun line. These profiles are fitted using both fixed and variable velocity two-com-
ponent spherical expansion models to estimateVOH with increasing distance from the nucleus. The OH coma
of Hale-Bopp was more spatially extended than those of previous comets, and this extension is best matched
by a variable acceleration of H2O and OH that acted across the entire coma, but was strongest within 1–
2� 104 km from the nucleus. Our models indicate that VOH at the edge of our detectable field of view (106

km) was�2–3 times greater in Hale-Bopp than for a 1P/Halley class comet at 1 AU, which is consistent with
the results of more sophisticated gas-kinetic models, extrapolation from previous observations of OH in com-
ets with QH2O > 1029 s�1, and direct radio measurements of the outer coma Hale-Bopp OH velocity. The
likely source of this acceleration is thermalization of the excess energy of dissociation of H2O and OH over
an extended collisional coma. When the coma is broken down by quadrants in position angle, we find an azi-
muthal asymmetry in the radial distribution that is characterized by an increase in the spatial extent of OH in
the region between the orbit-trailing and anti-Sunward directions. Model fits specific to this area and com-
parison with radio OHmeasurements suggest greater acceleration here, withVOH � 1:5 times greater at a 106

km cometocentric distance than elsewhere in the coma. We discuss several mechanisms that may have acted
within the coma to produce the observed effect.

Subject heading: comets: individual (Hale-Bopp 1995 O1)

1. INTRODUCTION

The study of conditions in comet comae must necessarily
begin with an understanding of water. As the dominant vol-
atile component liberated from comet nuclei, the produc-
tion rate, source geometry, temperature, outflow
characteristics, solar wind interaction, and photochemical
evolution of water sets the stage for much of the activity in
the coma. Water has no visible or UV emission lines and is
thus difficult to measure directly. Direct observations of
cometary water are now performed over small fields of view
in the IR (Dello Russo et al. 2000); however, the most effec-
tive methods for deriving the characteristics of water over
the entire coma have historically been from studies of its
daughter products, H, O, and OH. The distribution and/or
brightness of each daughter species can be used to derive
water production, provided specific knowledge of an appro-
priate set of physical characteristics (e.g., formation rate,
lifetime, outflow velocity, radial distribution, etc.) is avail-
able. These ancillary parameters will vary depending on the
daughter species studied and are known to differing degrees
of accuracy that depend on the solar radiation field, helio-
centric velocity, and the total gas production from the
comet. The interpretation of water production and evolu-
tion from a single measurement or species will therefore
vary with the degree of uncertainty in the underlying

assumptions (Schleicher, Mills, & Birch 1998). Fortunately,
the different aspects of water production are complemen-
tary, and greatly improved convergence is obtained from
coordinated observations (Combi et al. 2000).

This paper contains a detailed examination of the produc-
tion rate, radial distribution, and velocity structure of OH
in C/1995 O1 (Hale-Bopp) from wide-field images taken
during a 2 week period bracketing its perihelion passage.
Hale-Bopp was a unique object in the modern astronomical
era, one that provided our best opportunity to date to study
the physical properties of water production and evolution,
and the effects of collisional processes in the coma at the
extreme high end of comet gas production. Because of Hale-
Bopp’s very high activity, the OH emissions were bright
enough for us to overcome several magnitudes of atmo-
spheric attenuation, allowing us to detect them out to com-
etocentric distances greater than 106 km. Over this field of
view (FOV), we imaged the entire photochemical scale
length of OH, and could thus derive QH2O using only the
H2O ! OH branching ratio. To determine the first-order
velocity structure of the coma as an azimuthal average and
over position angle (P.A.) sectors relative to the comet–Sun
line, we fitted the radial profiles with two types of spherical
expansionmodels. The model fits show evidence of accelera-
tion over most of the coma that breaks down in regions
characterized by a strong velocity gradient within a few
�104 km of the nucleus and a slower process acting over
greater distances. These results compare favorably with
conclusions derived from more detailed gas-kinetic models
(Combi et al. 1999) and other complementary observations
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of OH (Colom et al. 1999; Woods, Feldman, & Rottman
2000) and other coma volatiles (Biver et al. 1999). We also
report on the presence of an extended OH radial distribu-
tion in the trailing sectors of the coma that has also been
seen in observations of metastable O(1D) (Morgenthaler et
al. 2001) and we provide a discussion of some possible
mechanisms that could produce it.

2. TECHNIQUES FOR USING OH AS A PROXY FOR
QH2O AND VOHðrÞ

OH is a good candidate for deriving QH2O and the other
dynamical properties of the coma. It has only one significant
formation pathway ðH2OÞ, whereas the other water by-
products, O and H, may be both chemical daughters and
granddaughters of H2O, in addition to having multiple
parents (in particular, O may come in significant quantities
fromCO and CO2). The O andH emissions have other com-
plicating characteristics, such as collisional quenching of
the visible O(1D) transition (Schultz et al. 1993) and hydro-
gen’s complex velocity structure (Smyth et al. 1993), large
scale length, and interactions with the solar wind and solar
radiation field. About �90% of OH is formed directly from
H2O into the X 2� ground state (Budzien, Festou, & Feld-
man 1994; Van Dishoeck & Dalgarno 1984), which results
in a bright, high-contrast resonance fluorescence emission
that is accessible from ground-based telescopes. The OH
scale length against photodestruction is much shorter than
for O or H (Huebner, Keady, & Lyon 1992), and it can thus
be imaged in its entirety with an intermediate- to large-FOV
telescope.

The OH life cycle follows three primary steps, beginning
with the photodestruction of H2O, followed by a radial
expansion away from the nucleus, and ending with its
dissociation or ionization. This chemical pathway
ðH2O ! OH ! OþH;OHþÞ has been studied extensively
both theoretically and observationally (Budzien et al. 1994;
Schleicher & A’Hearn 1988; Van Dishoeck & Dalgarno
1984), and, while recent observations of O(1D) suggest that
the dissociation branching ratios of OH to its daughters
may need to be reviewed (Morgenthaler et al. 2001), the
overall lifetime, state structure, and fluorescence efficiency
of OH appear to be relatively well understood as functions
of solar flux and heliocentric velocity. Because these various
parameters all contain information about the evolution of
water in the coma, to the extent that they are known, it is
possible to invert the OH distribution to amap of water pro-
duction either by fitting outflow models to the observed
radial distribution or by adding all of the photons from the
OH coma.

2.1. QH2O from Aperture Summation

If the angular extent of the coma is smaller than a tele-
scope FOV, and the signal level of OH is great enough to
overcome atmospheric extinction, one can sum all the pho-
tons in the FOV and determine QOH (and thus QH2O) with
knowledge of only the g-factor, the lifetime against OH pho-
todissociation, and the branching ratio fromH2O.With this
technique,QH2O is derived from

QOH ¼ NOH�D
2=�OH ; ð1Þ

where � is the solid angle of the FOV in radians, D is the
geocentric distance (cm), �OH is the photochemical lifetime
of OH in seconds, and NOH is the average column density
(cm�2) over the field of view. The column density comes
from the total signal in the aperture,

NOH ¼ 106IOH=g ; ð2Þ

where IOH is the field-averaged brightness in Rayleighs and
the fluorescence efficiency (in photons s�1), g, is adjusted for
heliocentric Doppler shifts across the solar Fraunhofer
spectrum at 309 nm (Schleicher & A’Hearn 1988). The con-
version to QH2O (Table 1) is made by dividing QOH by
BROH, the branching ratio of water dissociation to OH
(Table 2).

The principle advantage of aperture summation for the
determination ofQH2O is that it does not require any specific
knowledge of the structure of the coma, and is therefore not
dependent on models of the radial distribution. Its primary
disadvantage is that it provides only QH2O, without any
understanding of the other characteristics of the coma; how-
ever, when coupled with spatial imaging data, the knowl-
edge of QH2O can be used with radial measurements of the
brightness distribution to obtain structural information
about the coma.

TABLE 1

OHObservations of Hale-Bopp at the Burrell Schmidt

Observation

Date

Observation

Time

ra

(AU)

Db

(Au)

P:A:R
c

(deg)

P:A:V
d

(deg)

FOV

(km) AirMass

QH2O
e

(1030 s�1)

1997Mar 28 ... 02:31:58 0.917 1.327 15.6 285 4.646� 106 2.98–3.22 9.31� 1.4

1997 Apr 08.... 02:52:14 0.920 1.418 39.8 308 4.965� 106 2.55–2.74 10.8� 1.6

a Heliocentric distance.
b Geocentric distance.
c Position angle of the Sun–comet extended radius vector.
d Position angle of the comet velocity vector.
e Production rate derived from aperture summation.

TABLE 2

Orbit and Solar Cycle Specific Photochemical

Parameters of OH Production and

Fluorescence at 1 AU

Parameter Value

H2O dissociation branching ratio ...... 86%a

Dissociation rate of H2O................... 1.043� 10�5 s�1 b

Dissociation rate of OH .................... 7.491� 10�6 s�1 b

OH fluorescence g-factor................... 4.54� 10�5 s�1 c

a Huebner et al. 1992.
b Schleicher &A’Hearn 1988.
c Budzien et al. 1994.
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2.2. Outflow Velocity

Maps of the velocity and spatial distribution of escaping
OH are directly related QH2O, solar UV radiation intensity,
heliocentric velocity/distance, and collisional effects. When
the FOV of a measurement is smaller than the radial extent
of the OH coma, knowledge of the outflow velocity ðVOHÞ is
also required to invert the OH brightness distribution to
QH2O (Cochran & Schleicher 1993), because VOH and QOH

are proportional in a radially expanding flow.
Variation of the OH velocity distribution with cometo-

centric distance Rn [VOH(Rn)], depends on the velocity of the
parent H2O molecules, the effect of any subsequent colli-
sions of OH with coma constituents, and the excess energy
from the dissociation of H2O, which contributes a random
velocity vector with a magnitude of 1.05 km s�1 (Huebner et
al. 1992). The spatial extent of the OH coma is defined by
this velocity distribution, the dimensions of the source
region, the heliocentric distance of the comet, and the solar
UV intensity. In most comets the VOHðrÞ, particularly in the
inner coma, is not known directly, and is determined by
either fitting models to the radial shape of the coma or by
assuming a uniform outflow velocity with an observatio-
nally based dependence on heliocentric distance ðRhÞ, given
by

VOH ¼ 0:85R�2
h ð3Þ

(Budzien et al. 1994). Aside from the few in situ measure-
ments (Lammerzahl et al. 1987) that serve as a basis for the
above equation, wide-field, aperture-averaged measure-
ments of the line profile of radio OH emissions (Bockelee-
Morvan, Crovisier, & Gerard 1990; Colom et al. 1999) are
the only direct means we have for observing VOH. Radio
measurements generally validate the standard relation in an
average sense for comets with QH2O < 1029 s�1, but obtain
higher velocities for more active comets (Bockelee-Morvan
et al. 1990). The major limitations of using radio OH line
profiles forVOH are that the emissions are spatially averaged
and are strongly quenched in the inner coma (Schloerb
1988). The effect of quenching is to bias the extracted veloc-
ity to the outer coma, masking structure in VOHðRnÞ. This
is not a concern for weaker comets with a mostly
ballistic coma, but it is a serious problem in active
ðQH2O > 1030 s�1Þ comets like Hale-Bopp, where photolytic
heating (see x 2.3) acts to raise the temperature of the gas
and increase the bulk outflow velocity with increasing dis-
tance from the nucleus.

Deriving VOHðrÞ from the OH radial distribution while
assuming that the lifetime-related parameters are known
can be done in a variety of ways, ranging from variable-
width aperture photometry (Colom et al. 1999; Schleicher et
al. 1998) to radial intensity profile fitting with simple spheri-
cal expansion (Festou 1981; Haser 1957) or sophisticated
hydrodynamic (Crifo 1995) or Monte Carlo simulations
(e.g., Hodges 1990; Combi & Smyth 1988). The extent to
which these techniques produce unique results is determined
by the accuracy with which QH2O is known and the radial
distance out to which the OH brightness has been measured.
When distances less than the OH scale length are sampled,
spherical expansion models will produce a ‘‘ family ’’ of
velocity fits that are all of equal quality, but indicate differ-
ent values of QH2O. The range of acceptable velocities and
hence the convergence of model fits of VOH improves with
the increasing radial extent of the sampled profile. The most

remote parts of the profile, where IOH ! 0, are most impor-
tant to the convergence of VOH (Cochran & Schleicher
1993). The addition of wide-field summations of VOH

(Colom et al. 1999) further constrains the model.

2.3. The Collision Zone

Hale-Bopp is an extreme example of a comet in which col-
lisional acceleration acts across a spatially resolved region
of the coma, affecting the interpretation of both OH radial
profiles and outer coma velocity measurements. Where col-
lisions dominate, the characteristics of the flowwill be modi-
fied toward a thermalized average of all species (parent,
daughter, ion, electron, dust, etc.) that are present. Energy
input will come from daughter velocity excesses resulting
from photodissociation (dominated by fast H atoms) and
ionization, a process that is similar to photolytic heating in
planetary upper atmospheres. We can make a crude esti-
mate of the size of the collision zone by adopting the simple
case of a spherically symmetric expanding coma, with negli-
gible dust mass loading, and the edge defined as the point at
which the time between collisions goes to infinity for a par-
ticle moving purely radially away from the nucleus. Under
these assumptions, a simple formula (Whipple & Huebner
1976) for the collision zone radius ðRcÞ is

Rc ¼ �Qtot=4�V ; ð4Þ

where � is the mean molecular cross section (in cm2) for bal-
listic collisions, Qtot is the total gas production rate (s�1) of
the comet (dominated by H2O), and V is the mean outflow
velocity (cm s�1) of the background gas. In practice, this is a
gross approximation. The transition from a largely thermal-
ized distribution to completely ballistic flow is gradual,
extending over distances greater than Rc, while the regions
where collisions fully dominate are confined to the inner
�10% of the sphere (Combi et al. 1999). Models of the 1P/
Halley velocity structure (Hodges 1990) showed that, while
the flow was largely ballistic by 6� 104 km from the
nucleus, there was residual collisional heating out to more
than 2� 105 km. While simplistic, this assumption serves as
a rough guide for local conditions in the coma.

The relevance of equation (4) depends on the amount of
gas production. For weak to moderately active comets at 1
AU with QH2Od1029 s�1, VH2O ¼ 0:87 km s�1 (Budzien et
al. 1994), and � � 3� 10�15 cm2, the size of the collision
zone is of order 2750 km at 1 AU. This is smaller than the
scale lengths of most coma species and limits the effect of
collisions on the nonthermal component (dissociation
excess) of the daughter species velocities. Such a collision
zone will also be unresolved for most observations, which
means that acceleration that occurs within it will be detect-
able only as an increase in the uniform bulk flow that
becomes larger along with the gas production rate.

For very active comets withQH2Oe1030 s�1, the collision
sphere will be resolvable and will begin to approach the
dimensions of the scale lengths of H2O and OH. This means
that a significant fraction of all water photochemistry will
occur in a collisionally thick medium. Both models (Combi
et al. 1999; Combi & Smyth 1988; Hodges 1990) and obser-
vations (Bockelée-Morvan et al. 1990) show that this results
in a significantly hotter coma that flows more rapidly away
from the nucleus. Several estimates of QH2O (including this
work, x 3.2) obtained using different methods (Colom et al.
1999; Combi et al. 2000; Woods et al. 2000) converge to val-
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ues near 1031 s�1 for Hale-Bopp at perihelion, which corre-
sponds to Rc > 2:75� 105 km, assuming V � 1 km s�1.
This distance exceeds the scale length of water (by a factor
of 3) and several other coma species (both parent and
daughter) at 1 AU, and has two significant implications for
the coma. First, because significant photochemistry occurs
inside Rc, the photochemical excess energy of the daughter
species will be thermalized back into the bulk flow. Second,
due to radially ðRnÞ dependent energy deposition across the
broad, spatially resolvable collision sphere, the bulk outflow
velocity Vav, VOHðRnÞ, and the temperature of the gas will
all vary significantly with Rn. Such a velocity gradient will
be detectable in the shape and extent of the OH radial
brightness distribution, IOHðRnÞ.

3. OBSERVATIONS AND REDUCTION OF THE OH
BRIGHTNESS AND RADIAL PROFILE

The OH observations of Hale-Bopp were taken using the
Burrell Schmidt Telescope, which was operated in 1997 by
the Kitt Peak National Observatory (KPNO) and Case
Western Reserve University. The Burrell is a 0.9 m Schmidt
Cassegrain with a UBK7 corrector that provides system
sensitivity down to 305 nm. For Hale-Bopp we used the
KPNO SITE 2048� 2048 CCD camera covering a 78<9
FOV. Observations of OH were obtained as part of two
runs (March 24–29 and April 8) that bracketed perihelion.
The Burrell FOV diameter exceeded 107 km for Hale-Bopp
over this period, a radial extent roughly 2 orders of magni-
tude greater than the OH scale length in a Halley class or
weaker comet. The images were taken using the OH filter of
the Hale-Bopp comet library (Farnham, Schleicher, &
A’Hearn 2000) in single binning mode. The observations
are summarized in Table 1.

3.1. Calibration and Correction for Atmospheric Attenuation

The most serious calibration issue for OH imaging (Farn-
ham et al. 2000) is the strong opacity to air-mass depend-
ence at 309 nm, an effect that was exacerbated by the low
elevation of Hale-Bopp during this period. The comet began
each night at its maximum elevation, which, over our time
frame, ranged the equivalent of 2–3.5 air masses (Table 1),
and set within 4 hr. OH images were taken on each night,
but the most useful data were obtained on 1997 March 28
and April 8, when setup, acquisition, and focus were proce-
durally perfect, and where OH was the immediate priority
for observation. The data fromApril 8 are of higher quality,
mainly because of the lesser air mass. There were no calibra-
tion stars in the FOV of the comet images at 309 nm, so we
used a series of observations of � Aur over a similar range
of elevation angles as a flux standard. The integrated signal
of the star was extracted from the reduced Schmidt images
and compared with the unattenuated flux of � Aur as
observed with the IUE (using the high-dispersion, large-
aperture spectrum LWP 14778, NEWSIPS processing; Hol-
berg, Barstow, & Sion 1998). The IUE stellar flux was taken
from the spectrum over the bandpass (309� 3 nm) of the
Hale-Bopp OH Filter (Farnham et al. 2001) and compared
directly with the image data to derive the effective telescope-
atmosphere throughput as a function of air mass. The cor-
rected extinction for the Hale-Bopp images was determined
by interpolating between the stellar values to the exact air
mass of the comet. From the scatter in the star data we

assign a conservative �15% uncertainty in the extinction-
corrected comet OH intensities.

3.2. QH2O from Aperture Summation

In the full-aperture summation extraction, the flat-
fielded, bias, and dark-subtracted images were converted to
a series of concentric variable-diameter apertures centered
on the comet nucleus. The total flux was co-added until
increasing the area of the aperture failed to increase the inte-
grated IOH signal and a comparison with the ring summing
results (see x 3.3) indicated that the scale length had been
reached. The total ADU were converted to Rayleighs, and
from then to NOH and QH2O using equations (1) and (2)
above.

Applying this method to the OH images and using � Aur
calibration gives QOH ¼ 7:9ð�1:2Þ � 1030 s�1 on 1997
March 28 and 9:17ð�1:4Þ � 1030 s�1 on April 8. With
BROH ¼ 0:86 (Table 2; Huebner et al. 1992), this corre-
sponds to QH2O ¼ 9:31ð�1:4Þ � 1030 s�1 and 10:8ð�1:6Þ�
1030 s�1 on the two dates, respectively (Table 1). These val-
ues compare favorably with other measurements of QOH

made over the same period using a similar technique
(Woods et al. 2000), QH2O derived from H Ly� measure-
ments (Combi et al. 2000), and direct IR H2O observations
made near the nucleus (Dello Russo et al. 2000). These
results also serve as an anchor for the use of simulations of
spherical expansion in the coma (see x 4) that fit to the OH
surface brightness profile IOHðRnÞ, since they depend on
only two unknowns, QOH and VOH. As shown in equation
(5), a simple spherical expansion column integration pro-
vides the brightness of OH, with an approximately linear
relationship betweenVOH andQOH. Then

IOHðRnÞ ¼
gQOH

2� 106 �VOHR
2
n

�
Z �=2

0

Rn sec
2 � cos2 � e�Rn=VOH�OH d� ; ð5Þ

where g is the fluorescence efficiency,Rn is the cometocentric
distance (cm), VOH is the OH radial velocity, and �OH is the
photochemical lifetime of OH.

3.3. Ring Summation and theOHRadial
Brightness Distribution

Ring summation is a powerful method for obtaining
higher S/N data in areas of an image where the flux per pixel
is low. It is an area-additive technique whereby all or a por-
tion of the data points at a specific radial distance from a set
ring center are co-added. In the case of a spherically expand-
ing comet coma, the radial profile can be used to determine
the average radial outflow velocity by using a form of equa-
tion (5), and from there the production rate Q. We used a
dynamic summing algorithm to obtain the IOHðRnÞ profile
that operates by extracting all pixels over ranges of pro-
jected Rn and position angle, filtering for salt-and-pepper
noise, and then co-adding to obtain an average brightness.
The width of each ring in pixels is set to the smallest value
that maintained S=N > 4, up to a maximum of 75 pixels or
1:75� 105 km at the geocentric distance of Hale-Bopp. By
stepping outward in distance from the nucleus, a radial
brightness profile is obtained (Fig. 1). Full IOHðRnÞ azimu-
thal coma averages and subarcs of 90� and 30� in P.A. were
obtained using this method. The ADU per ring averages
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were again converted to Rayleighs based on the � Aur cali-
bration. Ring summation of the OH coma shows that:

1. the OH coma of Hale-Bopp is more spatially extended
than previously studied comets,
2. the bulk outflow velocity of the coma (�VH2O) was

substantially higher than was measured from 1P/Halley at
the same heliocentric distance,
3. the velocity in the coma is not uniform, but increased

as a function ofRn, and
4. there is velocity structure in the coma as a function of

P.A.

3.3.1. Azimuthally Averaged Ring Summation

The azimuthal averaged OH surface brightness radial dis-
tributions [IOHðRnÞ] show evidence of large-scale collisional
acceleration across a broad expanse of the coma, from both
the spatial extent of the emission and the profile gradient
inside 104 km. Figure 2 compares the measured OH radial
profile on April 8 with a simple two-component (parent and
daughter) version of the Haser (Krishna Swamy 1997)
model, assuming the 0.89 km s�1 spherical outflow derived
from 1P/Halley at a heliocentric distance of 1 AU (Budzien
et al. 1994; Lammerzahl et al. 1987). When the Halley class

Fig. 1.—Processed OH image from 1997 April 8 showing the distribution of the emission over the total area (�106 km from the nucleus) of the image
extracted in a sector ring summation. The summation technique is able to detect OH emission well beyond the observable edge of the OH coma in the image by
co-adding many pixels. The vector corresponding to the projected anti-Sun direction is included.

Fig. 2.—Azimuthally averaged radial surface brightness distribution of
OH on 1997 April 8, compared with the best fit of a model for a uniform
0.89 km s�1 outflow derived from the velocity-heliocentric distance rela-
tionship of Budzien et al. (1994). The model fits the profile out to a radial
distance of 2� 105 km, but begins to fall below the data beyond this point,
because of collisional acceleration in the inner coma. Production rate esti-
mates based on this fit yield QH2O ¼ 6� 1030 s�1, which is �30% less than
those obtained from other methods (e.g., Combi et al. 2000; Colom et al.
1999).
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comet model is fitted the observed profile, we obtain a close
match only out a to distance of�1–2� 105 km, and derive a
lower water production rate of QH2O � 6� 1030 s�1 than
from aperture summation. On larger spatial scales the
model fails as the simulated radial profile falls off while the
observed OH distribution continues outward. Indeed, we
can find no model scenario in which a Halley-like flow
describes the outer regions of Hale-Bopp’s coma or that
produces a QOH equivalent to that obtained from aperture
summation in the same image. We are able to use the model
to simultaneously fit the outer coma and obtain a QH2O

closer to the summation value; however, this requires the
assumption of a high VOH ¼ 3:5 km s�1 and produces a
radial brightness profile that greatly underestimates IOH in
the inner coma. As shown in x 4, this is consistent with our
general finding that a single-velocity outflow provides a
poor match to the observed IOHðRnÞ fromHale-Bopp.

3.3.2. Ring Summation in Arcs of Position Angle

To break down the coma and search for structure in the
radial extent of the emission, we divided the coma into four
90� arcs in P.A. and obtained individual IOHðRnÞ profiles for
each. The quadrant P.A. ranges were selected so that two
would be centered on the comet–Sun line, allowing a com-
parison of day- versus night-side gas production (Table 1).

The viewing geometry toward Hale-Bopp near perihelion
was particularly favorable, because the P.A.s corresponding
to the orbital velocity and anti-Sun vectors were well sepa-
rated. This meant that dust and ion tail vectors could also
be separated into separate quadrants, which gave us four
distinct coma environments (Sunward, anti-Sunward, orbit-
leading, and orbit-trailing) for comparison (Fig. 3).

Close examination of the quadrants shows significant
differences in the spatial extent of the emission and shape
of the radial profiles consistent with a Sun–comet angle/
orbital phase dependence in the velocity structure (Figs.
3a, 3b, and 4) that favors greater acceleration in the inner
coma of the trailing hemisphere. Moving outward in Rn

across the Sunward and orbit-leading quadrants, the IOH

is substantially greater in the inner ðRn < 105 kmÞ coma
than in the anti-Sun or orbit-trailing quadrants. Beyond
105 km the leading quadrant profiles begin to steepen
and become progressively fainter relative to the trailing
direction, with the IOHðRnÞ profile in the Sunward direc-
tion always being the least spatially extended. While the
magnitude of the difference in spatial extension varied
between the observations, the leading/trailing profile
asymmetry was a consistent feature on both dates
studied, and does not appear to be related to the effects
of short-term QH2O variability. Assuming a uniform gas

Fig. 3.—Quadrant profiles compared for each of the two nights. In (a) and (b) the four sectors covering 90� in P.A. that bracket the anti-Sun, Sunward,
anti-tail, and tailward directions are compared directly. While significant differences in the degree of symmetry in the coma are obvious between the nights,
there is a general trend of the anti-Sun and anti-tail profiles being shallow compared to the others inside 105 km and then crossing over to become more
extended beyond this point. In (c) and (d ), the most radially extended quadrants of the coma are broken down into 30� P.A. subsectors of position angle and
then compared with the anti-tailward sector. Each subsector is considerably more radially extended that the Sunward profile, and are also responsible for most
of the enhancement in the spherically averaged profile.
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source distribution, the differences between the quadrant
radial distributions are indicative of less acceleration
occurring in the leading quadrants, causing a relative
‘‘ pile-up ’’ of molecules in the inner coma, and hence
higher brightness there.

To get at the more detailed structure of the extended
emission in trailing quadrants, both were further divided
into three 30� subsector arcs in P.A. The shape of the
IOHðRnÞ profiles away from the nucleus in these subsectors
shows that the majority of the spatial extension can be iso-
lated to an �60� range of P.A. centered slightly anti-Sun-
ward of the dust tail and extending into the region between
the dust and ion tails (Figs. 3c and 3d). The enhancement
itself is not tightly confined, but extends into the adjacent
subsectors, eventually diminishing away from the peak back
to the levels seen in the leading quadrants. The most
extended subsectors appear to contribute most of the emis-
sion in the outer region of the coma both for quadrants of
which they are a part, and, more significantly, for the coma
as a whole. While the P.A. of the peak in extension does vary
slightly between these dates, the basic morphology of the
IOHðRnÞ asymmetry, its general location, and its effect on
adjacent subsectors does not. These characteristics are also
consistent with a similar feature reported in wide-field
O(1D) images taken 3 weeks prior to our observations (Mor-
genthaler et al. 2001) and inner coma C(1D) spectra taken
Sunward and tailward of the nucleus on the same night
(Oliversen et al. 2002).

4. COMA SIMULATION TECHNIQUES

To determine the first-order velocity structure of the
coma of Hale-Bopp, we used two different forms of a simple
two-component Haser model (Haser 1957; Krishna Swamy
1997). We opted for the Haser approach over the typically
more accurate vectorial model (Festou 1981), because the
latter assumes a daughter product velocity distribution
resulting from photodissociation in the purely ballistic case,
a condition that did not hold over most of the scale length
of the H2O parent in Hale-Bopp (see x 2.3). Spherical expan-

sion models are physical idealizations of the coma that
assume a constant, radial outflow that originates on the
nucleus. They do not address the detailed characteristics of
the coma, including extended source (icy grain) regions, azi-
muthal asymmetries, or temporal variations in gas produc-
tion, but they nevertheless have proven useful for estimating
outflow velocities and gas production rates when applied to
previous comets. In addition, they have the benefit of being
computationally simple, which lets us quickly sample a
broad area of parameter space to fit data. Our limited aims
in using such models here are to demonstrate the presence
of acceleration over a significant extent of the coma of Hale-
Bopp, to compare our results with more sophisticated mod-
els and other observations, and to define the range of initial
and final outflow velocities and production rates that
describe the observed OH distribution for use in focusing
more detailed future modeling efforts.

The Haser model variations use different outflow approx-
imations corresponding to cases of a static-velocity and an
accelerating coma. In the static-velocity model, both VH2O

and VOH are held fixed throughout the coma, but need not
be equal. In the accelerating model, we simulate collisional
mixing and acceleration by forcing VH2O ¼ VOH every-
where, while allowing the combined flow to increase with
Rn. The other physical parameters that describe H2O/OH
photochemistry and fluorescence, including g-factors and
lifetimes (Table 2), are set to the appropriate solar cycle,
heliocentric distance, and Swings effect values found in the
literature (Budzien et al. 1994; Schleicher & A’Hearn 1988)
and are common to the two models. Each velocity simula-
tion consists of three different runs of each model over spa-
tial scales in the coma of Rn < 105 km, 105 km � Rn <
106 km, and the full profile out to 106 km. The output model
profiles are then normalized to the data profile and eval-
uated by summing the point-by-point variance between the
data and model. By weighting the model-data comparison
higher in the inner coma and the outer edge of the radial dis-
tribution, we are able to screen out velocity combinations
that fit large regions of the profile very well, but are obvi-
ously wrong at the extremes.

4.1. The Static-VelocityModel

The situation represented by the static-velocity model
is essentially a twist on the conditions that occur in
weaker comets. Acceleration in such cases occurs primar-
ily in a small, unresolved region near the nucleus, with
VOH and VH2O continuing past that point as a roughly
static flow. VOH is roughly equal to VH2O, differing only
by the spherically randomized 1.05 km s1 excess velocity
of H2O dissociation (e.g., Festou 1981). For Hale-Bopp,
we use the classical fixed velocity two-component Haser
model (Krishna Swamy 1997) that produces good results
for weaker comets. However, we allow for additional
acceleration in the coma that takes the form of either a
difference in the parent (H2O) and daughter (OH) veloc-
ities (with restriction that VOH � VH2O) or a single-veloc-
ity flow (VH2O ¼ VOH) that is higher than the 0.86 km
s�1 measured for Halley. The usefulness of the static
model is in revealing both the presence of acceleration
and its spatial extent in the coma. If VOH and VH2O are
the same (i.e., VOH=VH2O ¼ 1), but both are larger than
�1 km s�1, it indicates that acceleration has occurred,
but was only effective in the very inner coma, in which

Fig. 4.—Four quadrants extracted from the data set of 1997 April 8, div-
ided by the azimuthal average to show the differences between the quad-
rants. The significant departure from the average in the 10�–100� P.A.
range is clearly shown. This profile is considerably shallower than average
out to �105 km, and then crosses over to be more extended out to the edge
of the sampled field.
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case the static model will produce a simulated profile that
is a good approximation of the actual coma velocity
structure. However, if VOH and VH2O differ (i.e.,
VOH=VH2O > 1), it indicates not only that acceleration
has occurred, but also that it has acted over a spatially
extended area of the coma. While this result identifies the
presence of an extended acceleration region, the simu-
lated radial profile is an unphysical approximation of it,
because the model must treat the velocity gradient only
as a difference between a fixed VOH and VH2O. This tends
to drive VH2O low relative to its actual value and both
QOH and VOH higher.

We tested the static model for a range of velocities from
0.25 to 5.0 km s�1 to obtain sets of IOHðRnÞ versus VOH for a
given VH2O (which was also varied stepwise in velocity) in
both the coma-averaged case and the four quadrants. For
each VOH-VH2O model pairing, the requirement that
VOH � VH2O was enforced. A comparison of QOH from the
model versus the aperture-summation technique was used
as an external validity check, but not as a fitting criterion.
The full set of model profiles were compared with the data
and a grid search was performed over the entire parameter
space to find the smallest data-model variance. The best
model runs match the observed radial profiles closely (Fig.
5a), including the most spatially extended regions of the
coma (Tables 3 and 4). The location of the variance minima
in the parameter space of velocity and production rate con-
verges to a narrow range varying by�10% (Fig. 6), which is
better than our photometric accuracy.

In Figure 6 we can see that a uniform ðVOH=VH2O ¼ 1Þ
outflow does not match the brightness distribution very
well. The best matches for this case have variances that are
more than 100 times larger than for the model minima. The
smallest data-model variances are found in a pronounced
minimum centered on a velocity ratio 5 < VOH=VH2O < 7,
which is consistent with the second of the two cases the
model is sensitive to, an acceleration process that acts over
much of Hale-Bopp’s coma. The velocity product in the
best-case simulation ðVOHVH2O ¼ 2:7Þ gives a crude esti-
mate of the average outflow velocity over the modeled
coma. We can also estimate velocity gradients implied by
the model by computing the species-weighted average veloc-
ity VavðRnÞ as a function of cometocentric distance using

the equation,

VavðRnÞ ¼
NOHðRnÞVOHðRnÞ þNH2OðRnÞVH2OðRnÞ

NOHðRnÞ þNH2OðRnÞ
; ð6Þ

where NOHðRnÞ and NH2OðRnÞ are the column densities
(count per cm�2) of these species. This function shows a
strong inner coma velocity gradient that diminishes beyond
the water scale length.

The consequences of broad acceleration for the static
model are found in the magnitude of VOH, which is 1.5 to 2
times larger than the direct measurement of Colom et al.
(1999), andQOH, which translates to aQH2O 1.3 to 1.5 times
greater than aperture summation. An indirect symptom of
the model failure is the tie of QH2O to VOH (Tables 3 and 4),
with the production rate increasing to compensate for the
higher velocities in the more radially extended regions of the
coma.

4.2. Simulations of Variable Velocity Expansion

Based on the apparent presence of acceleration across the
bulk of Hale-Bopp’s coma, an improvement in the physical
accuracy of the model profiles should be achieved by adopt-
ing a single parent-daughter velocity that changes with com-
etocentric distance. Accelerating spherical expansion
models (Hu 1990) are typically avoided, because the acceler-
ation regions of most comets are confined to the unresolved
extreme inner coma, and because the Haser approach offers
no physical insight into the nature of the acceleration or
how to implement it. To avoid taking an entirely ad hoc
approach to this problem, we draw from the basic elements
of the more detailed one-dimensional dusty-gas hybrid
kinetic–Monte Carlo/dusty gas–hydrodynamic model of
Hale-Bopp provided in Combi et al. (1999) as a starting
point for developing a simple variable-velocity spherical
expansion model. Their model has the coma effectively
breaking down into two regions. Close to the nucleus, fast
H atoms formed by H2O and OH dissociation are rether-
malized into the bulk flow. This heats and accelerates the
coma out to a distance, defined byQtot andRH, where H col-
lisionally decouples from the background gas. Past this
point, the primary source of acceleration shifts from the
diminishing collisional component to a passive filtering of

Fig. 5.—Sample model fits shown for the spherically averaged OH radial distribution on 1997 April 8, using the (a) fixed-velocity and (b) variable-velocity
models. The parameters of the model outputs are shown in each case. Both models indicate the presence of acceleration over much of the coma, with the varia-
ble case providing a much closer match toQH2O andVOHðrÞ values obtained from other measurements.
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the thermal distribution, where the slowest component of
the OH thermalized velocity distribution is photodissoci-
ated at a greater rate at a given cometocentric distance,
because its scale length, BOH ¼ VOH�OH, is smaller. The col-
lisional and passive acceleration zones are approximated in
our simulations with different linear velocity gradients on
either side of a contact radius. At all locations in this model
VOH ¼ VH2O, and excess formation energy is assumed to be
rethermalized to the bulk gas flow. The initial velocity,
velocity gradients, and the location of the contact radius are
the permitted input variables.

Runs of the accelerating model across the same range of
velocity space have local minima in the variance that are
�10 times smaller than the static-velocity case, while QOH

and outer comaVOH are more in line with the aperture-sum-
mation results and other observational data. The input
parameters for the best cases were for a contact radius 1–
2� 104 km, an initial velocity of �1.0 km s�1, a final veloc-
ity of 2.3–2.6 km s�1, and a QH2O � 0:8 1:0� 1031 that is
equal to the aperture-summation value (Tables 3 and 4; Fig.
5b). The velocity gradients were much steeper inside the
contact region than beyond it. These parameters all match

the best available measurements of QH2O (Combi et al.
2000), VH2O and VOH (Colom et al. 1999), and the predic-
tions of the Combi et al. (1999) dusty gas model.

When the model results are compared sector by sector in
P.A., QH2O is more uniform through the coma than in the
fixed case. This is expected if the source function is nucleus-
centered and both VOH and VH2O can accelerate with Rn.
We also find that the leading hemisphere is less accelerated
than the trailing one, with the most spatially extended sec-
tors being fitted by a larger outflow velocity at 106 km than
those in the coma average. The largest velocity gradients in
the coma average and trailing hemisphere are found inside
the collision sphere, although most of the acceleration
occurs in the outer coma, where the velocity gradient is sig-
nificantly smaller, but acts over a substantially greater dis-
tance. On March 28, the leading sectors of the coma were
fitted best by an acceleration profile that had no gradient
inside the collision zone. Whether this is an artifact of the
model or indicative of a physical mechanism such as dust-
mass loading (Combi et al. 1999) is not clear from our sim-
ple treatment.

5. COMPARISONS OF THE MODEL VELOCITY
DISTRIBUTION WITH OTHER

DATA AND MODELS

5.1. Radio Outflow VelocityMeasurements

As a check on the results of our models, we compared the
derived velocities with the aperture-summed radio measure-
ments of Colom et al. (1999) and Biver et al. (1999), both of
whom obtained velocity and production rate data for Hale-
Bopp on dates overlapping with our measurements. To
obtain an areal average from the model radial velocity pro-
files involved computing a number-density–weighted, line-
of-sight–integrated velocity at each radial distance from the
nucleus out to the edge of the radio measurement FOV,
weighting each ring by its ratio with the full sampled area,
and then co-adding all of the rings to obtain an average out-
flow velocity. The main caveat to this approach is that our
simple model produces line-of-sight velocities assuming
pure radial expansion without vectorial or thermal disper-
sion in the velocity distribution. However, the trapezoid

TABLE 4

Variable-Velocity Model for Both Nights

P.A. Range

(deg) VO VC Vedge

dV1

(105 s�1)

dV2

(105 s �1) QH2O

1997March 28

0–360 ................ 0.94� 0.26 1.07� 0.07 2.64� 0.02 1.25� 1.25 0.20� 0.01 9.70� 0.55

30–120 .............. 0.88� 0.10 0.88� 0.10 1.78� 0.25 0.0 0.15� 0.06 8.95� 1.10

120–210............. 0.94� 0.10 0.94� 0.10 1.74� 0.25 0.0 0.14� 0.05 9.80� 0.77

210–300............. 1.05� 0.30 1.36� 0.15 2.10� 0.20 3.1� 2.0 0.11� 0.04 11.5� 1.1

300–30 .............. 1.02� 0.33 1.21� 0.13 2.22� 0.32 1.9� 1.5 0.14� 0.07 8.85� 0.55

1997 April 8

0–360 ................ 0.94� 0.10 1.14� 0.22 2.52� 0.25 2.0� 1.8 0.24� 0.07 9.30� 0.60

0–90 .................. 0.90� 0.10 1.04� 0.10 2.24� 0.50 1.4� 1.3 0.21� 0.10 9.13� 0.31

90–180 .............. 0.88� 0.17 0.94� 0.12 2.50� 0.50 0.6� 0.5 0.27� 0.08 8.70� 0.59

180–270............. 1.02� 0.30 1.16� 0.16 2.65� 0.35 1.2� 1.0 0.23� 0.08 10.1� 0.9

270–360............. 1.05� 0.35 1.43� 0.20 2.70� 0.24 3.8� 3.0 0.19� 0.05 11.1� 1.0

Note.—Here Vedge is the velocity at the edge of the modeled radial profile of OH, and dV1 and dV2 are respectively
the velocity gradients inside and outside the contact radius used in the model to break the coma into two regions.

TABLE 3

Results of Fixed-Velocity Simulation Fits Shown as a Coma

Average and by Quadrant for Both Nights

P.A. Range

(deg) VH2O VOH

Q31
H2O�

�1031 s�1
�

Sector

1997March 28

0–360 ........... 0.52� 0.07 3.25� 0.30 1.44� 0.09 Average

210– ............. 0.56� 0.12 2.35� 0.35 1.30� 0.10 Anti-tail

120– ............. 0.60� 0.16 2.35� 0.35 1.40� 0.09 Sunward

30–120 ......... 0.60� 0.08 4.65� 0.55 1.72� 0.11 Tailward

300–30 ......... 0.48� 0.04 3.80� 0.50 1.31� 0.12 Anti-Sun

1997 April 8

0–360 ........... 0.53� 0.07 3.20� 0.30 1.30� 0.05 Coma average

270–0 ........... 0.56� 0.04 2.65� 0.25 1.19� 0.05 Anti-tail

180– ............. 0.44� 0.16 2.60� 0.50 1.09� 0.10 Sunward

90–180 ......... 0.52� 0.08 2.95� 0.35 1.28� 0.06 Tailward

0–90 ............. 0.68� 0.08 4.00� 0.30 1.51� 0.06 Anti-Sun
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method (Bockelee-Morvan et al. 1990) used in the reduction
of the radial data also isolates only the radial velocity com-
ponent, which is the equivalent of our model velocities. The
two methods are therefore sufficiently similar in approach
to make a comparison valid.

5.2. Inner Coma Velocities

Biver et al. (1999) provide velocities over different regions
of the inner coma, but they do not specifically measure OH.
Indeed they cannot, since virtually all of it would be
quenched at such small distances from the nucleus (Schloerb
1988; Schloerb et al. 1999). Instead, they use several differ-
ent species, including HCN, CO, H2S, CH3OH, CS, and
H2CO, to derive the expansion velocity over the 1 5� 104

km half-power width of their beam. Given the extent of the
collision sphere, and clear evidence for acceleration across
the inner coma, it is reasonable to assume that the outflow
at any given point over this region is the same for all gas spe-
cies. In the case of the inner coma of Hale-Bopp, therefore,
it appears at first glance that one species is as good as
another for sampling the bulk flow. However, an important
factor to pay attention to is how the differences in radial dis-
tribution for the different species affect the areal-averaged
velocity. Every constituent of the coma will have different
radial characteristics defined by its scale length, whether it is
a parent or a daughter species, or whether it has an extended
source distribution. Depending on the relative brightness
distributions of two species, they can have very different
‘‘ area-averaged ’’ velocities, despite being entrained in the
same flow. The extent to which Biver et al. (1999) accounted
for this in their measurements is unclear, but it must have
been a significant effect given the spread of scale lengths for
the species they measured. For our purposes, we ran a varia-
ble-velocity simulation for the set of acceleration parame-
ters corresponding to the model run with the smallest
variance, while inserting a species with a scale length equal
to that of HCN (Huebner et al. 1992) and assuming a
nucleus-centered source. Using Figure 2 of Biver et al., we
find an HCN outflow velocity of 1:4� 0:1 km s�1 for the
period surrounding perihelion, which is consistent with our

derived value of VHCN ¼ 1:2� 0:15 km s�1 to within their
relative errors.

5.3. Intermediate Distances

Colom et al. (1999) directly measured the velocity of OH
over a much larger area than Biver et al. (1999), using an
asymmetric [3<5� 190, 2� 105ð Þ � 1:1� 105ð Þ km] beam to
obtain a coma-averaged outflow velocity ðVavÞ. We are able
to compare our model with this result, with the primary cav-
eat that we must also address the effect of quenching in the
radio measurements. Schloerb et al. (1999) computed the
OH quenching radius (RQ) for Hale-Bopp to be 5� 105 km.
Since only OH molecules at distances �RQ are detectable in
radio observations, Colom et al. (1999) therefore measured
a velocity average that was strongly biased to the outer
coma. If acceleration occurs within the quenching radius,
the result will be a higher radio-measured coma-averaged
velocity relative to our model, which samples all regions
equally. The two methods will return the same value only
for the cases of zero acceleration or acceleration in a spa-
tially small region near the nucleus. The size of the difference
between our model and the radio measurement is indicative
of the magnitude of the acceleration and the range of Rn

over which it occurs. When our best model runs are veloc-
ity-averaged over the Colom et al. (1999) FOV, we obtain a
value ofVav � 1:7 km s�1 for the full coma average, which is
considerably smaller than their measured Vav � 2:2 km s�1.
This comparison can be taken as evidence of a broad accel-
eration or a failure in the model technique. To distinguish
between these, we carry the model-data comparison further
by incorporating quenching effects into the model such that
we restrict the contributing OH emission to a shell sur-
rounding the nucleus with an inner radius equal to RQ.
Averaging only the velocities in this extended region of
the coma results in a model-average velocity of
Vav ¼ 2:3 km s�1, which is close to the radio measurement.

5.4. Comparison with Predictions Based on Previous
Active Comets

Very little data exists on the characteristics of comets with
QH2O � 1031 s�1, and most of the predictions are merely an

Fig. 6.—Statistics of weighted least-squares difference vs. two tests of convergence for all cases in the fixed-velocity model. (a) Product of the OH and H2O
velocities. The convergence onto a narrow range in the cases of close fits is consistent with the two velocities tracking each other inversely in the model. (b)
Ratio of the velocities, revealing the degree of acceleration in the inner coma. Theminimum of the distribution changes between the quadrants, with the largest
values occurring for the radially extended sectors. Also evident here is the overall low quality of uniform, or close to uniform, single-velocity outflow, which is
a value of 1 here. The fit indices for this case are�2 orders of magnitude larger.
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extension of the behavior of weaker comets to this scale. In
this sense, Hale-Bopp is in a class of its own with respect to
coma dynamics and provides the best opportunity to date to
test the accuracy of these predictions. When QH2O �
1031 s�1, the collision sphere radius exceeds the scale length
of water at 1 AU, opacity effects become significant, and
other processes, such as parent/daughter/granddaughter
collisions, chemistry (e.g., Komitov 1989), and ion-neutral
interactions, may begin to emerge. Bockelée-Morvan et al.
(1990) have compiled the most extensive listing ofQH2O ver-
sus VH2O in active ðQH2O > 1029 s�1Þ comets, and their data
show clear evidence of an upturn in the outflow velocity for
active comets. Hale-Bopp is a validation that this trend con-
tinues with increasing activity, although perhaps not to the
extent implied by those weaker comets. Cochran &
Schleicher (1993) took the Bockelée-Morvan results a step
further by fitting them to a power-law modification of the
standardQ-V relationship,

VOH ¼ 0:85R�2
h ðQ=1030Þ0:5 ; ð7Þ

which, as a graphical fit, is a somewhat ad hoc result. Using
their equation we can obtain a value of VH2O � 3:25 km s1

for a comet with QH2O ¼ 1031 s�1 and Rh ¼ 0:91 AU. This
value is substantially higher than what we obtain from the
variable-velocity model or was observed in the aperture-
average velocity (Colom et al. 1999). Interestingly, it does
match the velocity required to fit the outer coma in the
static-velocity case (Tables 3 and 4). What appears to differ-
entiate Hale-Bopp from the comets that were used in the
Bockelée-Morvan study is the range of Rn over which the
collisional heating was effective, the relative sizes of the col-
lision zone, andBOH.

6. POTENTIAL SOURCES OF THE
EXTENDED EMISSIONS

The OH enhancement in the sector between the anti-Sun
and orbit-trailing directions could have one source or sev-
eral mechanisms acting together to produce it. Some of
these are unlikely or can be easily shown to be inadequate.
For example, the magnitude of radiation pressure on OH is
only enough to accelerate the gas by �0.01 km s�1 over our
field of view, which is far too small to be relevant to this
case. We discuss here four mechanisms that could produce
an apparent enhancement, including dust contamination
from the tail, distributed gas production from icy grains,
dust mass loading in the leading hemisphere, and an ion-
neutral interaction.

6.1. Dust Contamination

While OH emission dominates over continuum in the
regions near the nucleus, dust contamination may be signifi-
cant in the outer parts of the coma, where the OH brightness
is lower. If improperly accounted for, the dust scattering of
the solar continuum could produce a false region of
enhancement. This effect is most important where the dust is
concentrated along the tail and extending back toward the
anti-Sunward vector, which is also where the extended OH
emission regions are observed. Mogenthaler et al. (2001)
addressed this in their processing of a similar O(1D)
enhancement, and determined that the continuum was nei-
ther bright enough or distributed in a way that could cause
the observed effect. To check for possible dust continuum

contamination in our data, we made a direct comparison of
the radial shape and brightness of the dust and OH in the
enhanced sectors, using a continuum image obtained on the
same night as the April 8 OH data as a dust flux standard.
The image was taken using the blue continuum
ð444:6� 3:1 nmÞ filter of the Hale-Bopp filter library, cov-
ering the same field of view. After correcting for instrument
sensitivity, atmospheric attenuation, and the relative spec-
tral intensity of the dust continuum at 310 nm versus 445
nm, a radial dust profile was extracted over the subsector
corresponding to the greatest radial enhancement of OH. In
direct comparison (Fig. 7), the dust and OH radial distribu-
tions differ on two levels that allow us to eliminate dust as
the source of the trailing extension. First, the shape of the
dust profile is significantly shallower with radial distance
than that of OH. Second, its brightness contribution is only
�2%–10% that of OH out to distances greater than 106 km.

6.2. Icy Grain or Debris Evaporation

While we can demonstrate that scattered solar continuum
from dust does not contribute significantly to the OH radial
distribution, the dust lane does cover areas of the enhanced
regions and could thus still affect the OH radial distribution
through outgassing from grains and larger debris in the tail.
It is not possible to completely exclude this process as a con-
tributor, but it would have several effects on coma structure
that make it an unlikely source of the increased spatial
extent of OH. The distribution of evaporative grains would
need to be approximately uniform throughout the tail sec-
tors to produce the smooth radial shape seen in the OH
data. The source of evaporating grains would have to have
been continuous over a period of more than a month to
account for the persistence of the feature in OH, O(1D) and
C(1D) images and spectra (Morgenthaler et al. 2001; Oli-
versen et al. 2002). Finally, any OH produced beyond
2� 105 km would be in the ballistic coma, and thus not
accelerated beyond the addition of the grain motion and the
1.05 km s�1 excess formation velocity of OH from H2O.
Because the distribution of OH is dominated by the
extended sectors beyond 5� 105 km, such a velocity admix-
ture would be reflected in the aperture-summation measure-

Fig. 7.—Radial profile of the most extended subsector of the OH coma,
compared with the scaled residual dust continuum in the same sector. As
can be seen, the contribution of the dust to the radial shape observed in the
OH is not large enough to significantly affect the basic characteristic of the
extension relative to the other sectors.
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ments of Colom et al. (1999) as a reduced Vav that is not
observed.

6.3. DustMass Loading

Several studies of the Hale-Bopp coma have concluded
that dust grain production was largely confined to the sunlit
hemisphere of the nucleus (Rauer et al. 1997; Weaver et al.
1997), while gas production was more uniformly distributed
(Samarasinha, Mueller, & Belton 1999). In the inner coma
regions, where photolytic heating was most effective in
accelerating the neutrals, collisions with the local dust grain
population would absorb a portion of the thermal energy
and impede the acceleration and heating of the gas, at least
near the nucleus. The spatial extent and efficiency of the
dust-loading process in Hale-Bopp was examined by Combi
et al. (1999), who looked at the effect on outflow for different
cases of an active sector on the nucleus with various dust
grain size distributions. While the magnitude of the interac-
tion is highly dependent on unknown elements of the dust
grain size, Combi et al. (1999) does show significant mass
loading of the flow in the dusty areas. This could explain
certain aspects of the spatial structure seen in OH, particu-
larly the fact that the Sunward quadrant was consistently
less extended than the others. However, the magnitude of
the effect in the Combi et al. model is significantly less than
is observed between the leading and trailing hemispheres in
OH. Moreover, this process fails to predict a focused accel-
eration in the dust-free zone, but rather produces focused
deceleration in the Sunward direction.

6.4. Ion-Neutral Coupling

Photoionization and solar wind mass loading provide a
considerable source of energy input to the trailing hemi-
sphere of the coma that could be tapped to produce a vec-
tored acceleration in the neutral component in a manner
similar to that observed in planetary ionospheres. Newly
formed ions in the inner coma will be picked up by the mag-
netized solar wind and accelerated in the solar wind flow
direction at a rate that depends on the density, velocity, and
field strength in the local wind. The slower comet ions will
mass load the solar wind, but, depending on the coma gas
density, may in turn be mass loaded by interactions with
inner coma neutrals, which are moving both radially away
from the nucleus and in the direction of the comet orbit.
This latter (orbital) component is largest at perihelion and
acts perpendicular to the solar wind acceleration. In a high-
density coma, ions may have several interactions with neu-
trals before escaping the ballistic regime that will both
retard their acceleration and deflect them in the orbit direc-
tion. Hale-Bopp’s large QH2O provided a substantial source
of coma gas density; however, the strength of any ion-neu-
tral coupling would also depend on the solar wind charac-
teristics and the different charged-particle scattering cross
sections of the molecular species. Limited observational
support for such an interaction is found in observations of
inner coma ion distribution and densities made by Ander-
son (1999). These data show smooth acceleration of H2O

þ

at 0.161 m s�2 on 1997 March 16, and 0.197 m s�2 on 1997
April 21, out to more than 2� 106 km from the nucleus.

This acceleration is 3–10 times smaller than was derived for
Halley in 1986 (Scherb et al. 1990). Anderson (1999) attrib-
utes this retardation to solar wind mass loading by the sub-
stantial population of comet ions. Since both solar wind
and ion/neutral mass loading produce the same observed
effect in the Anderson data, it is not possible to distinguish
between the two processes based solely on the available
data, at least not without either direct measurements of the
solar wind (which were not made for Hale-Bopp) or detailed
modeling of interaction that is beyond the scope of this
work.

7. SUMMARY

We have derived QH2O from wide FOV images of OH
emission from Hale-Bopp using aperture summation and
VOHðrÞ from static- and variable-velocity spherical expan-
sion models that assume an unresolved H2O source region.
The resulting integrated OH brightness and QH2O are con-
sistent with other observations taken near perihelion, while
model fits to the radial distribution of OH show a significant
enhancement in the cometocentric extent of the emission
relative to weaker comets. Static-velocity spherical expan-
sion modeling indicates strongly that acceleration occurred
over a substantial region of the coma. This conclusion is
reinforced with the somewhat more physically realistic vari-
able-velocity simulations, which suggest increasing outflow
velocity with increasing Rn that is characterized by a steep
velocity gradient inside a collision zone and a broad region
of slower acceleration over the rest of the coma. These
results are consistent with the extrapolated predictions of
coma structure for very active comets that are based on a
combination of models (Combi & Smyth 1988) and obser-
vations (Bockelee-Morvan et al. 1990; Schleicher et al.
1998). When compared to published radio measurements of
VOH and QH2O (Biver et al. 1999; Colom et al. 1999), our
models match coma averages over fields of 104 km and
2� 105 km.

When the coma is broken down into quadrants, a signifi-
cant asymmetry in the OH radial distribution emerges in the
shape of the profiles on all scales within the coma. The OH
brightness distributions in the trailing hemisphere are gener-
ally shallow compared to the leading hemisphere in the
inner coma, but cross over at intermediate distances to
become brighter and more spatially extended. This behavior
was a common characteristic of each observation and is sim-
ilar to an azimuthal asymmetry observed in O(1D) (Mor-
genthaler et al. 2001) and C(1D) (Oliversen et al. 2002).
Detailed study of the spatial extension shows it to be pri-
marily focused into a 60� range of P.A. between the dust tail
and the anti-Sunward direction. Model fits for these regions
suggest that greater acceleration occurred in these regions
than elsewhere in the coma. We have discussed several pos-
sible sources for the enhancement, including a wider trailing
hemispheric collision region, icy grain outgassing in the dust
tail, reduced dust mass loading in the trailing hemisphere,
and a vectored ion-neutral interaction with the solar wind
and comet ions. Additional modeling is required to distin-
guish among those processes that cannot be discounted as a
contributing factor.
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